

# EPA REGION III RISK-BASED CONCENTRATION TABLE: TECHNICAL BACKGROUND INFORMATION

originally developed by Roy L. Smith, Ph.D., Toxicologist revised 4/12/99 by Jennifer Hubbard, Toxicologist

# Development of Risk-Based Concentrations

#### General

Separate carcinogenic and non-carcinogenic risk-based concentrations were calculated for each compound for each pathway. The concentration in the table is the lower of the two, rounded to two significant figures. The following terms and values were used in the calculations:

| Exposure variables                                     | Value  | Symbo         |
|--------------------------------------------------------|--------|---------------|
| General:                                               |        |               |
| Carcinogenic potency slope oral (risk per mg/kg/d):    | *      | CPSo          |
| Carcinogenic potency slope inhaled (risk per mg/kg/d): | *      | CPSi          |
| Reference dose oral (mg/kg/d):                         | *      | RfDo          |
| Reference dose inhaled (mg/kg/d):                      | •      | RfDi          |
| Target cancer risk:                                    | 1e-06  | TR            |
| Target hazard quotient:                                | 1      | THQ           |
| Body weight, adult (kg):                               | 70     | BWa           |
| Body weight, age 1-6 (kg):                             | 15     | BWc           |
| Averaging time carcinogens (d):                        | 25550  | ATc           |
| Averaging time non-carcinogens (d):                    | ED*365 | ATn           |
| Inhalation, adult (m3/d):                              | 20     | IRAa          |
| Inhalation, child (m3/d):                              | 12     | IRAc          |
| Inhalation factor, age-adjusted (m3-y/kg-d):           | 11.66  | IFAadj        |
| Tap water ingestion, adult (L/d):                      | 2      | <b>IRW</b> a  |
| Tap water ingestion, age 1-6 (L/d):                    | 1      | IRWc          |
| Tap water ingestion factor, age-adjusted (L-y/kg-d):   | 1.09   | IFWadj        |
| Fish ingestion (g/d):                                  | 54     | IRF           |
| Soil ingestion, adult (mg/d):                          | 100    | IRSa          |
| Soil ingestion, age 1-6 (mg/d):                        | 200    | IRSc          |
| Soil ingestion factor, age adjusted (mg-y/kg-d):       | 114.29 | <b>IFSadj</b> |
| Residential:                                           |        |               |
| Exposure frequency (d/y):                              | 350    | EFr           |

| Exposure variables                |         |           |   | Value   | Symbo |
|-----------------------------------|---------|-----------|---|---------|-------|
| Exposure duration, total (y):     | •       |           |   | 30      | EDtot |
| Exposure duration, age 1-6 (y):   |         |           | , | <br>6   | EDc   |
| Volatilization factor (L/m3):     | •,      | •         |   | 0.5     | K     |
| Occupational:                     |         |           | , |         |       |
| Exposure frequency (d/y):         |         |           |   | 250     | EFo   |
| Exposure duration (y):            |         |           | • | 25      | EDo   |
| Fraction of contaminated soil ing | ested ( | unitless) |   | <br>0.5 | FC    |

\*: Contaminant-specific toxicological constants. The priority among sources of toxicological constants was as follows: (1) IRIS, (2) HEAST, (3) HEAST alternative method, (4) EPA-NCEA Superfund Health Risk Technical Support Center, (5) withdrawn from IRIS or HEAST, and (6) other EPA documents. Each source was used only if numbers from higher-priority sources were unavailable, unless NCEA indicated a newer provisional value was superior to an older HEAST value. The EPA Superfund Health Risk Technical Support Center, part of the EPA National Center for Environmental Assessment in Cincinnati, develops provisional RfDs and CPSs on request for contaminants not in IRIS or HEAST. These provisional values are labeled "E = EPA-NCEA provisional" in the table. It is possible they may be obsolete. If one of the "E" constants is important to a Superfund risk assessment, consider requesting, through a Regional risk assessor, a new provisional value.

# Age-adjusted factors

Because contact rates with tap water, ambient air, and residential soil are different for children and adults, carcinogenic risks during the first 30 years of life were calculated using age-adjusted factors. These factors approximated the integrated exposure from birth until age 30 by combining contact rates, body weights, and exposure durations for two age groups small children and adults. The age-adjusted factor for soil was obtained from RAGS IB; the others were developed by analogy.

(1) Air inhalation

IFAadj 
$$\frac{m^3 \cdot y}{kg \cdot d} = \frac{EDC \cdot IRAC}{BWC} + \frac{(EDtot - EDC) \cdot IRAa}{BWa}$$

(2) Tap water ingestion

IFWadj  $\frac{L \cdot y}{kg \cdot d} = \frac{EDC \cdot IRWC}{BWC} + \frac{(EDtot - EDC) \cdot IRWa}{BWa}$ 

(3) Soil ingestion

IFSadj  $\frac{mg \cdot y}{kg \cdot d} = \frac{EDC \cdot IRSC}{BWC} + \frac{(EDtot - EDC) \cdot IRSa}{BWa}$ 

## Residential water

Volatilization terms were calculated only for compounds with a mark in the "VOC" column. Compounds having a Henry's Law constant greater than 10<sup>-5</sup> and a molecular weight less than 200 were considered volatile. The list may be incomplete, but is unlikely to include false positives. The equations and the volatilization factor (K, above) were obtained from RAGS IB. Oral potency slopes and reference doses were used for both oral and inhaled exposures for volatile compounds lacking inhalation values. RBCs for carcinogens were based on combined childhood and adult exposure; for non-carcinogens RBCs were based on adult exposure.

#### (4) Carcinogens

$$RBC \frac{ug}{L} = \frac{TR \cdot ATc \cdot 1000 \frac{ug}{mg}}{EFr \cdot ([K \cdot IFAadj \cdot CPSi] + [IFWadj \cdot CPSo])}$$

### (5) Non-carcinogens

$$RBC \frac{\mu g}{L} = \frac{THQ \cdot BWa \cdot ATn \cdot 1000 \frac{\mu g}{mg}}{EFr \cdot EDtot \cdot \left(\frac{K \cdot IRAa}{RfDi} + \frac{IRWa}{RfDo}\right)}$$

#### Ambient air

Oral potency slopes and references were used where inhalation values were not available. RBCs for carcinogens were based on combined childhood and adult exposure; for non-carcinogens RBCs were based on adult exposure.

## (6) Carcinogens

$$RBC \frac{\mu g}{m^3} = \frac{TR \cdot ATC \cdot 1000 \frac{\mu g}{\pi g}}{EFr \cdot IFAadj \cdot CPSi}$$

# (7) Non-carcinogens

$$RBC \frac{\mu g}{m^2} = \frac{THQ \cdot RfDi \cdot BWa \cdot ATn \cdot 1000 \frac{\mu g}{mg}}{EFr \cdot EDtot \cdot IRAa}$$

#### Edible fish

All RBCs were based on adult exposure.

(8) Carcinogens

$$RBC \frac{mg}{kg} = \frac{TR \cdot BWa \cdot ATC}{EFr \cdot EDtot \cdot \frac{IRF}{1000 \frac{g}{kg}} \cdot CPSo}$$

(9) Non-carcinogens

$$RBC \frac{mg}{kg} = \frac{THQ \cdot RfDo \cdot BWa \cdot ATn}{EFr \cdot EDtot \cdot \frac{IRF}{1000 \frac{g}{kg}}}$$

#### Commercial/industrial soil ingestion

RBCs were based on adult occupational exposure, including an assumption that only 50% of total soil ingestion is work-related.

(10) Carcinogens

$$RBC \frac{mg}{kg} = \frac{TR \cdot BWa \cdot ATC}{EFo \cdot EDo \cdot \frac{IRSa}{10^6 \frac{mg}{kg}} \cdot FC \cdot CPSo}$$

(11) Non-carcinogens

$$RBC \frac{mq}{kg} = \frac{THQ \cdot RfDo \cdot BWa \cdot ATn}{EFo \cdot EDo \cdot \frac{IRSa}{10^6 \frac{mq}{kg}} \cdot FC}$$

# Residential soil ingestion

RBCs for carcinogens were based on combined childhood and adult exposure; RBCs for non-carcinogens were based on childhood exposure only.

(12) Carcinogens

$$RBC \frac{mg}{kg} = \frac{TR \cdot ATC}{EFr \cdot \frac{IFSadj}{10^6 \frac{mg}{kg}} \cdot CPSo}$$

# (13) Non-carcinogens

$$RBC \frac{mg}{kg} = \frac{THQ \cdot RfDo \cdot BWC \cdot ATn}{EFr \cdot EDc \cdot \frac{IRSc}{10^{6} \frac{mg}{kg}}}$$